
TRS-B0® MODEL III

TINY PASCAL
.USER'S MANUAL

m:,TRS-BD

CAT. NO.

26-2020

TM

SOFTWARE

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP.

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER , RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the " Equipment") , and any copies of Radio
Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities,
versatility , and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects . THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened , or if the Equipment or Software has been
subjected to improper or abnormal use . If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center , a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair , replacement, or refund of the purchase price , at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design , capability, capacity, or suitability for use of the Software , except as provided in this
paragraph. Software is licensed on an "AS IS" basis , without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center , a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

Ill. LIMITATION OF LIABILITY

A EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
" EQUIPMENT" OR "SOFTWARE" SOLD, LEASED , LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software .
C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following
provisions:
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software.
C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.
D. CUSTOMER shall not use, make , manufacture , or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software.
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in

the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made . However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights , and the original CUSTOMER may have other rights which vary
from state to state.

Tiny Pascal Program:
© 1982 Supersoft Corporation Inc.

Licensed to Tandy Corporation
All Rights Reserved.

Tiny Pascal User's Manual:
© 1982 Tandy Corporation.

All Rights Reserved.

Reproduction or use, without express written permission from
Tandy Corporation, of any portion of this manual is prohibited.
While reasonable efforts have been taken in the preparation of
this manual to assure its accuracy, Tandy Corporation assumes
no liability resulting from any errors or omissions in this
manual; or from the use of the information contained herein.

Please refer to the Software License on the inside front cover of
this manual for limitations on use and reproduction of this Soft­
ware package.

10 9 8 7 6 5 4 3 2 1

_M_o_d_el_I_I_I _________ TRS-BO ® Tiny Pascal

Introduction

Tiny Pascal is a cassette-based program development system. It is
designed for creating, compiling, and executing Pascal programs.
Tiny Pascal is a subset of the standard Pascal language.

To use the Tiny Pascal System, you need:

TRS-80 Model III with at least 16K of RAM

Cassette Recorder (We recommend Radio Shack's CTR-80A.)

This manual is not intended to teach you Pascal programming, but
rather to show you how to use Tiny Pascal on your Model III. If
you need instructions on Pascal programming, we recommend the
following books:

Programming in Pascal; Grogono. Addison-Wesley, 1978.

Pascal: User Manual and Report; Jensen and Wirth.
Springer-Verlag, 1974

A Primer on Pascal; Conway, Gries, and Zimmerman. Winthrop
Publishers, 1976.

Pascal, An Introduction to Methodical Programming; w. Findlay
and D.A. Watt. Computer Science Press, 1978.

---------- llad1elhaell----------

1

_M_o_d_e_l_I_I_I _________ TRS-BO @ ________ T_i_n..,v_P_a_s_c_a_l_

1/ Overview of the System

Tiny Pascal is a self-contained system for creating, compiling,
and running Pascal programs on your Model III computer~ Once you
have loaded Tiny Pascal from the cassette, you can use all three
of the "sub-systems":

Monitor

Compiler

Editor

Provides run-time support, checks for errors, and
provides the necessary utilities for saving programs
and loading them to and from the cassette tape.

Translates your Pascal source program into "p-code"
which you then can execute through the Monitor. The
Compiler also checks your source code for syntax
errors.

Lets you create or modify Tiny Pascal source
programs.

When you load the Tiny Pascal System from the tape, all three
sub-systems are loaded into RAM. We also have included a sample
program on the cassette tape. This, too, loads into RAM when you
load the system.

If you have a disk drive on your Model III, you can transfer the
Tiny Pascal program to a diskette. See Appendix E for details.

Overview of this manual
Chapter 2 shows you how to load the Tiny Pascal System and how to
create, compile, and run a program. Chapters 3 through 5 discuss
the three sub-systems in detail--what they do and how to use
them. Chapter 6 considers the specific aspects, limitations, and
enhancements of the Pascal language.

The appendices contain a list of error codes, syntax diagrams,
program listings, and other useful information.

----------1tad1olhaell----------

2

_M_o_d_e_l_r_r_r _________ TRS-BO ® _______ T ... 1_· n_y __ P_a_s_c_a_l_

Terms and Notations

For clarity and brevity, we often use the following terms and
notations in this manual:

<KEYBOARD CHARACTER>
indicates the key you must press.

lowercase underline
represents words, letters, values, or other characters you
supply.

UPPER CASE and punctuation
indicate material that you must enter exactly as it appears
(unless told otherwise by the text) or material that you see on
your computer's video display.

----------1tad1elhaeli----------

3

_M_o_d_e_l_I_I_I _________ TRS-BO ® ________ T_i_n.y_P_a_s_c_a_l_

2/ Starting Up

In this chapter, we show you step by step how to load the Tiny
Pascal System, enter the Editor, and run a program. In later
chapters, we go into detail on each aspect of the System.

Loading the System
To load the Tiny Pascal System, follow these steps. If you can't
get the program to load properly, adjust the volume and try
again.

1. Turn on your Model III. (If your Model III has a disk
drive, override the disk startup by holding down <BREAK> and
pressing the reset button at the same time.) The computer
displays the prompt,

Cass?

2. Answer the prompt by pressing <ENTER>. Basic then asks you
for the memory size. Again, respond by pressing <ENTER>.

3. The computer displays the copyright and the Ready prompt.
Type SYSTEM <ENTER> to reach the system level. The computer
prompts you with an asterisk and question mark (*?).

4. Make sure your Tiny Pascal tape is rewound to the beginning
of the tape. Then press the PLAY button on the cassette
player and type PASCAL <ENTER>.

5. The tape begins to load in memory, and a blinking asterisk
(*) appears in the upper right hand corner. The load takes
about a minute-and-a-half.

5. Once the tape has loaded, the computer again displays the
asterisk and question mark (*?). Press</> <ENTER>. Now,
the computer enters the Tiny Pascal Monitor and displays the
memory size and the Monitor prompt,

Tiny Pascal:

----------1tad1elhaell----------

4

_M_o_d_e_l_I_I_I _________ TRS-BO @ ________ T_i_n_y_P_a_s_c_a_l_

Creating a Program
When you load your Tiny Pascal System, you also load the sample
program. To look at this program, type:

EDIT <ENTER>

You are now in the Tiny Pascal Editor. The Editor prompts you
with a "greater than" symbol (>). Type:

P* <ENTER>

to display the program. Now, you could delete the program by
entering the command D*. Then you could enter your own program.
For now, however, just return to the Monitor by typing:

Q <ENTER>

You should see the Tiny Pascal: prompt again.

Compiling the program
To run a Tiny Pascal program, you must first compile the source
code into a machine readable form called "p-code." If your Model
III has 32K or 48K of RAM, type:

COMP <ENTER>

or if you Model III is equipped with 16K of RAM, type:

COMP -S <ENTER>

This instruction tells the Compiler to create the p-code from the
source code in the work file. The Compiler displays each line of
the program as it processes the file.

Had there been an error in the source code, the compilation would
have aborted, and the System would have entered the Editor.
However, there are no errors in the program on your cassette, so
when the Compiler is finished, you should see the Tiny Pascal:
prompt again.

----------1tad1elhaell----------

5

_M_o_d_e_1_r_r_r _________ TRS-BO @ ________ T_i_n_y_P_a_s_c_a_l_

Running the Program
NOw that you have compiled the source code and created the
p-code, you can run the program by typing:

RUN <ENTER>

Procedure PGMl creates an interesting display on your screen.
Procedure PGM2 is a video game. "Appendix F" tells you how to
play the game.

----------1tad1elhaeli----------

6

_M_o_d_e_l_I_I_I ________ TRS-BO ® Tiny Pascal

3/ The Monitor

The Tiny Pascal Monitor gives run-time support to the entire
system. It also lets you load and store your source and compiled
programs, via the cassette tape. You invoke the Compiler and
Editor from the Monitor, also.

Monitor Commands
After you ·1oad and start the system, you enter the Tiny Pascal
Monitor. The Monitor prompts you with the message:

Tiny Pascal:

Now you can enter any of the Monitor commands, which are:

EDIT

COMP

COMP -P

COMP -S

RUN

Enters the edit mode. The Editor uses a "work
file" in memory. If you haven't loaded a source
file, the Editor creates the work file.

Compiles the source code in the work file. The
compiled "p-code" locates elsewhere in user
memory. Should an error occur, the compilation
aborts and the System enters the Editor at or near
the error line.

Compiles the source code in the work file but
produces no p-code. This is useful for checking
for syntax errors.

Compiles the source code in the work file and
overwrites the source code with p-code. This is
useful for compiling large programs.

Executes the program. Execution begins right
away, if you have the p-code in the work file.
The Compiler creates a new p-code before
execution, if any of the following has occurred:

You haven't compiled the source code.

The last compilation caused an error.

You have modified the source code since
the last compilation.

----------llad10/haell----------

7

_M_o_d_e_l_I_I_I ________ TRS-BO ® Tiny Pascal

SAVE filename Saves the current work file on the cassette and
names the file filename. If you have the source
code in the work file, the System saves only the
source code. If you have no source code, but do
have a valid p-code, the System saves the p-code.

LOAD filename Loads a source code or p-code from a cassette
file named filename. This command destroys the
old source program and the p-code in the work
file.

CALL Calls a machine language subroutine. The Monitor
prompts you for the decimal address of the
routine.

POKE Loads a byte into memory. The Monitor prompts you
for the decimal memory address and byte value.

Note that with the COMP -S command you may choose to overwrite
your source code with the compiled p-code. Be sure to save the
source code before you issue such a command.

The filename can have up to six characters. Remember that once
you write a file to the tape, there is no way to check for its
filename so you must load it with the exact name with which you
stored it. If you accidentally type the wrong filename when
loading a file, the Tiny Pascal System displays the name of the
cassette file it read in, but may not return to the Monitor. If
this happens, you must reset and reload the System.

---------- llad1e/haell----------

8

_M_o_d_e_l_I_I_I _________ TRS-BO ® ________ T_i_n_y_P_a_s_c_a_l_

4/ The Editor

The Editor enables you to create and modify source programs. It
is line-oriented, but since Pascal doesn't use line numbers, none
are stored as part of the source code, although the Editor
displays the current line number in the upper right hand corner
of the screen.

No line can have more than 130 characters. The total number of
lines allowed is limited only by your Model III's memory,
however, you cannot access lines over 999 directly by line
number.

Start the Editor by typing in:

EDIT <ENTER>

from the Monitor. The Editor prompts you with a "greater than"
symbol (>). Now you can enter any of the Editor commands.

You can enter each command in upper or lower case. Some commands
also let you specify a number or a string of characters. The
number can be any integer from 1 to 999. The string can
have from 1 to 62 characters.

If you enter an invalid command, the Editor responds with the
message ILLEGAL.

Editor Commands

D

Dnumber

D*

Fstring

Deletes the current line.

Deletes the number of lines specified, starting
with the current line.

Deletes the entire file.

Finds the first occurrence of the string,
starting with the current line. If you don't
specify a string, the Editor uses the last
string specified.

---------- llad1e/haell----------

9

_M_o_d_e_l_I_I_I ________ TRS-BO ® Tiny Pascal

I

IO

N

Nnwnber

N*

p

Pnwnber

P*

Q

R

s

u

Unwnber

U*

X

Inserts lines after the current line. The Editor
prompts you with a question mark (?). To end the
insert mode, press <ENTER> on a blank line.

Begins the insert mode at the top of the file.

Moves down one line.

Moves down the nwnber of lines specified.

Moves down to the last line of the file.

Prints the current line.

Prints the nwnber of lines specified, starting
with the current line.

Prints the entire file.

Returns to the Monitor after displaying the
current file status.

Replaces the current line. The System prompts you
with the insert prompt, a question mark (?).

Displays the current file status, including the
number of lines, number of bytes, file location in
memory, and the number of free bytes remaining in
user memory (rounded off to the nearest ten
bytes).

Moves up one line.

Moves up the nwnber of lines specified.

Moves up to the first line of the file.

Extends the current line. The System displays the
current line and positions the cursor at the end
of the line. You may add characters or backspace
with the <left arrow> to make changes.

----------1tad1elhaeli----------

10

_M_o_d_e_l_I_I_I _________ TRS-BO ® ________ T_i_n_y_P_a_s_c_a_l_

.number Moves to the line number specified.

* Moves to the last line of the file.

<BREAK> If pressed during execution of a program, causes a
pause in the program. Pressing <BREAK> twice
returns you to the Monitor.

<right arrow> Tabs three spaces.

<left arrow> Backspaces once for a space or three spaces for a
tab.

<up arrow> Moves up one line.

<down arrow> Moves down one line.

<ENTER> Ends the current line. If you type <ENTER> on a
blank line, the Editor leaves the insert mode.

Note: If a MEMORY FULL error occurs while you are editing or
inserting, the source file is too big. You might be able to
solve this problem by deleting excess spaces and tabs.

----------1tad1elhaeli----------

11

_M_o_d_e_l_I_I_I __________ TRS-BO ® Tiny Pascal

5/ The Compiler

The Tiny Pascal Compiler translates your Pascal source code into
an intermediate form called "p-code". The runtime Monitor
translates this p-code into the actual machine commands. This
compiled form runs from four to eight times faster than a similar
BASIC program.

Compiling the program
After you have created a source program with the Editor, or have
loaded a source program from your cassette player, you can
compile it into p-code by typing:

COMP <ENTER>

If you wish, you may follow COMP with one of two options. The
first option causes the ~ompiler to generate no p-code. You can
use this to check your syntax when you write programs. To use
this option, type:

COMP -P <ENTER>

The second option causes the generated p-code to locate over the
top of your source code in memory. You might use this option if
you have a large program, because sometimes the program doesn't
fit into the space normally assigned for p-code. The source code
that was stored in memory is destroyed, so be sure to save your
source code before you compile it. To use this option, type:

COMP -S <ENTER>

If during compilation of a program the Compiler runs out of
memory to store the p-code, you may get a syntax error. If you
cannot pin down an error in your code, this may be the problem.
Try compiling the code with the -S option, or else try removing
any unnecessary code.

The Complier Specifications
The Tiny Pascal language is a subset of standard Pascal.
Essentially, the syntax of Tiny Pascal is the same as the full
language. In Appendix D, you'll find syntax diagrams and notes
to help you with the language.

----------llad1e/haell----------

12

_M_o_d_el_I_I_I ________ TRS-BO ® Tiny Pascal

Since we intend for this manual to be an explanation of the
limits and special features of Tiny Pascal, we won't present the
entire language, but rather review some of the essential points.
If you need a more thorough review of Pascal, see the references
in the "Introduction."

----------1tad1elhaell----------

13

_M_o_d_e_l....,.I_I_r _________ TRS-BO ® _______ T_i_· n_y......_P_a_s_c_a_l_

Appendix A/ Useful Addresses

Address
Decimal Hex Size Function

19200 4B00 2 bytes Startinq address of user source oroqram

19202 4B02 2 bytes Ending address of source proqram

19204 4B04 2 bytes Number of lines of the source proqram

19206 4B06 2 bytes Ending address of user p-code

19208 4B08 2 bytes Address of Compiler p-code

19210 4B0A 2 bytes Address of Monitor/Editor p-code

19212 4B0C 2 bvtes Address of currently running proqram

19214 4B0E 2 bytes Endinq address of user memory

19216 4Bl0 2 bvt.es Address of p-code interpreter

19218 4Bl2 2 bytes Address of Compiler table

19220 4Bl4 2 bytes Line number where compiler error occured
\

19222 4Bl6 1 byte Flaq indicatinq compiler error

19223 4Bl7 1 byte Flag indicatinq to generate p-code

19224 4Bl8 1 byte reserved

19225 4Bl9 1 byte Monitor state

19226 4BlA 1 byte Flaq indicatinq p-code is executable

,19227 4BlB 1 byte Printer on/off flag

----------1tad1elhaell----------

14

_M_o_d_e_l_r_r_r _________ TRS-BO ® ________ T_i_n,_y_P_a_s_c_a_l_

Note: You may turn the printer flag on and off (1 and 0,
respectively) and change the user memory size. Whenever you turn
on the printer flag, it outputs all information to both the video
display and the printer. You might want to change the memory
size in order to protect your machine-language subroutines. You
never should modify any of the other system controls.

----------1tad1e lhaell----------

15

_M_o_d_e_l __ r_r_r _________ TRS-BO ® _______ T_i_· n_y_P_a_s_c_a_l_

4400

4600

4B00

4B20

4B70

4CA0

5780

58A0

67F0

Appendix B/ Memory Map

Entry points table for p-code interpreter

Tiny Pascal p-code interpreter

System Control Block

Keyboard and video routines

cassette I/0 routines

Monitor/Editor p-code

Compiler table

Compiler p-code

User memory for source code and p-code

----------llad1elhaeli----------

16

_M_o_a_e_l_r_r_r _________ TRS-BO ® _______ T_1._· n_y ___ P_a_s_c_a_l_

Appendix C/ Sample Programs

1 (* TINY PASCAL V-2.0 SAMPLE PROGRAMS*)
2 VAR WHICH:INTEGER;
3
4
5

PROC PGMl; (*HILBERT CURVES BY K.M . CHUNG
(* LAST MOD 10/17/81 H. YUEN*)

04/79*)

CONST N=4; H0=32;
VAR I,H,X,Y,X0,Y0:INTEGER;

PROC GMOVE (DIR) ;
BEGIN CASE DIR OF

1: BEGIN FOR Y:=Y
2: BEGIN FOR X:=X
3: BEGIN FOR Y:=Y
4: BEGIN FOR X:=X

END;

TO
TO

DOWNTO
DOWNTO

PROC HILBERT(R,D,L,U,I);
BEGIN IF I>0 THEN BEGIN

Y+H
X+H
Y-H
X-H

DO PLOT (X, Y, 1);
DO PLOT (X, Y, 1);
DO PLOT(X,Y,l);
DO PLOT(X,Y,l);

HILBERT(D,R,U,L,I-1); GMOVE(R);
HILBERT(R,D,L,U,I-1); GMOVE(D);
HILBERT(R,D,L,U,I-1); GMOVE(L);
HILBERT(U,L,D,R,I-1) END

END;

BEGIN (*PGMl *)

Y:=Y-1
X:=X-1
Y:=Y+l
X:=X+l

END;
END;
END;
END END

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

WRITE(l5,28,31,13,' HILBERT CURVES
FOR I:=l TO 12 DO WRITE(l3);

OF ORDERS 1 TO 4');

I:=0; H:=H0; X0:=H DIV 2; Y0:=X0;
REPEAT I:=I+l; H:=H DIV 2;

X0:=X0-H DIV 2; Y0:=Y0+H DIV 2;
X:=X0+(I-1)*32; Y:=Y0+l0;
HILBERT(2,3,4,l,I)

UNTIL I=N; READ(!)
END;

---------- llad1elhaell----------

17

_M_o_d_e_l_I_I_I _________ TRS-BO ® _______ T_1_· n_y_P_a_s_c_a_l_

35 PROC PGM2; (*BLOCKADE. BY K.M.CHUNG
36 (* LAST MOD 10/14/81 H. YUEN*)

4/26/79*)

37 VAR I,J,SPEED,ABORT,BLNK:INTEGER;
38 SCORE,MARK,MOVE,CURSOR:ARRAY(l) OF INTEGER;
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

PROC PSCORE;
BEGIN WRITE(SCORE(0)#);

MEMW(%4020):=%3FFE; (*SET CURSOR*)
WRITE(SCORE(l)#) END;

PROC BLINK;
VAR T,K,DELAY:INTEGER;

BEGIN T:=CURSOR(I)-MOVE(I);
FOR K:=l TO 30 DO BEGIN

FOR DELAY:=l TO 160 DO;
IF MEMW(T)=BLNK THEN MEMW(T):=MARK(I)

ELSE MEMW(T):=BLNK
END

END;

BEGIN WRITE(28,31,'SPEED(l-10)');
READ(SPEED#); SPEED:=SPEED*l0+l0;
MARK(0):='*'+'*'SHL 8; MARK(l):=' ('+') 'SHL 8;
BLNK : = ' ' + ' ' SHL 8 ;
SCORE(0):=0; SCORE(l):=0;
REPEAT WRITE(l5,28,31); (*TURN OFF CURSOR, CLEAR SCREEN*)

FOR I:=9 TO 117 DO BEGIN
PLOT(I,1,1); PLOT(I,45,1) END;

FOR I:=l TO 45 DO BEGIN
PLOT(9,I,l); PLOT(l0,I,l);
PLOT(ll6,I,l); PLOT(ll7,I,l) END;

CURSOR(0):=%3C00+64*4+12:
CURSOR(l):=%4000-64*4-16;
FOR J:=0 TO 1 DO MEMW(CURSOR(J)):=MARK(J);
MOVE(0):=64; MOVE(l):=-64;
I:=l; ABORT:=0; PSCORE;
REPEAT UNTIL INKEY<>0; (*HIT ANY KEY TO START*)
REPEAT I:=1-I;

FOR J:=l TO SPEED DO
CASE INKEY OF

'W':MOVE(0):=-64;
' D ' : MOVE (0) : = 2 ;
'X' : MOVE (0) : =64;
' A ' : MOVE (0) : =- 2 ;

'O':MOVE(l):=-64;
' ; ' : MOVE (1) : =2;
'. ':MOVE(l) :=64;
' K ' : MOVE (1) : =- 2

END;
CURSOR(I):=CURSOR(I)+MOVE(I);
IF MEMW(CURSOR(I))=BLNK THEN MEMW(CURSOR(I)):=MARK(I)
ELSE BEGIN SCORE(l-I):=SCORE(l-I)+l;

ABORT:=l; BLINK END
UNTIL ABORT

UNTIL SCORE(l-I)>=l0; READ(I)
END;

---------- llad1olhaeli----------

18

_M_o_d_e_l_I_I_I _________ TRS-BO ® ________ T_i_· n_y_P_a_s_c_a_l

87 BEGIN (* •• MAIN .. *)
88 REPEAT
89 WRITE(28,31,14,13,13,'SAMPLE PROGRAMS',13,13);
90 WRITE(9,'l: PLOT HILBERT CURVES',13);
91 WRITE(9,'2: THE GAME OF BLOCKADE',13);
92 WRITE(l3,9, '9: QUIT' ,13);
93 READ(WHICH);
94 IF WHICH='l' THEN PGMl ELSE IF WHICH='2' THEN PGM2
95 UNTIL WHICH='9'
96 END.
97 1198 BYTES CODE. (72DF-778C)

---------- llad1elhaell----------

19

_M_o_d_e_l _I_I_I _________ TRS-BO ® Tiny Pascal

Appendix D/ Syntax Diagrams and Notes

STATEMENT

--.---iv AR I A BL EXPRESSIONt----------------------------------

IDENTIFIER

EX PRESSION STATEMENT STATEMENT!--_. _________ _,,

§- STATEMENT

EX PRESSION @---jsTATEMENTll-----------------------~J

STATEMENT

I EX PRESSION ~0-0-- EX PRESSION !-----------------__,,

----------1tad1elhaell----------

20

_M_o_a_e_l_rr_r _________ TRS-BO ® Tiny Pas c a l

PROGRAM

-~o
BLOCK INTEGER

STRING

HEX INTEGER

~-..,,_ _________________ _

81--~~-••-il STATEMENT 1-I -~--· s-
(_0---· J

FACTOR

------• ICONSTANTl1------------------------..---

'------ VARIABLE 1------------------------

FUNCTION 0 1 1 r.\ J ----1 DENTI Fl ERi--_...._,.. (--~r--• EXPRESSION 1--~)~--i~
\ 0-· -

---NOT1----IFACTOR11------------------~~

t----• 11 E X PRESSION I .)

'---•-11M EM1--- G)---I E X PRESSION ,__, ---•••) 1---------

----------llad1elllaell----------

21

_M __ o_a_e_1_1iii,i1iiioi1 __________ TRS-BO ® Tiny Pascal

EXPRESSSJON

-§1MPLE E XPR ESSION1-I -~-~-~~-~-~------------·

))))~)

~ ~ T 1 <c 1. som wRm,oN

SIMPLE EXPRESSION

-c-~--ITERM,~-~--

~ ~ -TT~
TERM

VARIABLE

-----11 DENTI Fl EFl 11---~,----------------~--

L~~
CONSTANT

' J 10ENTIFIERI ,, •

I\. I I
1 INTEGER I

J

I STRING I
j

:HEX INTEGER:

IDENTIFIER

LETTER

LETTER

DIGIT

llad1e lhaell

22

_M_o_a_e_l_ r_r_r _________ TRS-BO ® ________ T_i_n,.y_P_a_s_c_a_l_

INTEGER

C •§> J
STRING

---0----=,----•' (cHARACTEFYJ------.,---• o''-----(___ J
HEXINTEGER

-~ _ HEXADECIMAL,____ _ _
~ DIGIT

----------1tad1olhaell----------

23

_M_o_d_e_l_I_I_I _________ TRS-BO ® ________ T_i_n ... v.....,.P_a_s_c_a_l_

Syntax Notes

Operators
use a colon and equal sign (:=) to assign variables and an
equal sign (=) for conditional statements.

Use a semi-colon (;) to separate statements, but not to end
statements.

You may use both arithmetic and logical (Boolean)
expressions. OR, a Boolean operator, has the same
precedence as the plus sign (+) and the ,minus sign <->,
arithmetic operators. AND has the same precedence as the
asterisk (*) and DIV. Both AND and OR have precedence over
the following operators; the equal sign (=), the "greater
than" sign <>>, and the "less than" sign (<).

You must use parentheses, the symbols (), rather than
brackets, the symbols [).

Enclose comments within parentheses and asterisks, the
symbols (*and*).

Identifier usage
You may use upper or lower case for your identifiers, and

the Compiler recognizes the difference between upper and
lower case. Each identifier must begin with a letter. You
may follow this with letters or numbers, but only the first
four characters are significant.

You must declare your identifiers before you use them. If
you declare them more than once, the last declaration
applies. Do not declare the formal parameters of a
procedure inside the procedure.

The System passes parameters to procedures by value (the
System makes a copy of the parameter for use by the
procedure).

---------- llad1elhaell----------

24

_M_o_d_e_l_I_I_I _________ TRS-BO @ ________ T_i_n.,y_P_a_s_c_a_l_

The scope of a variable is within the procedure that defines it.

Data types
Tiny Pascal supports 16-bit signed integers and
one-dimensional integer arrays. The subscripts for arrays
begin at zero and are not checked for out of range at
runtime. To assign values to the elements of the array, you
must assign each member individually.

Prefix hexadecimal constants with a percent sign (%).
Example: %2400.

Enclose strings within single quotation marks ('). When you
use a string in an expression, a CONST declaration, or CASE
label, it has the value of the Ascii code of the first
character of the string. When you use a string in a WRITE
statement, it has the value of the entire string.

Input/Output
The READ and WRITE statements are character-oriented. This
means that you can input or output more than one character
with a single statement. To read or write a decimal number,
follow the variable name with a number sign (#). To read or
write the number as hexadecimal, follow the variable name
with a per cent sign (%). Also, you must end integer or hex
input by pressing <ENTER> or <SPACEBAR>.

To begin writing on a new line, you must output the
code for carriage return. In decimal, this is 13.
it is %OD. For example, WRITE(l3) sends a carriage
to the screen. The other screen functions, such as
clear, use the same ASCII characters as BASIC. For
WRITE(28,31) clears the screen.

Logical Operations

ASCII
In hex,
return
screen
example,

In a logical expression such as IF, WHILE, or
condition is true if the least significant bit
other words, if the expression evaluates to an

REPEAT, the
is one (in
odd number).

The relational operator symbols, such as< and=, always
produce a value of zero or one.

----------1tad1elllaeli----------

25

_M_o_d_e_l_I_I_I __________ TRS-BO ® Tiny Pascal

Functions, Procedures, and Operators
These are the built-in functions, procedures, and operators. Be
sure to include any required punctuation when typing them.

ABS(number)
Returns the absolute value of the number specified.

CALL(address)
Jumps to a user-defined subroutine beginning at address. The
subroutine must save all registers upon entry, restore all
registers on exit, and return from the subroutine with the
following instructions:

INC DE
INC DE
RET

COMP(addressl,address2,number)
Compares strings that are the specified number of bytes long,
beginning at addressl and address2. If the strings are the
same, the function returns a one. If not, it returns a zero.

numberl DIV number2
Performs truncated integer division of numberl by number2.
Example: 27 DIV 5 = 5.

FILL(address,numberl,number2)
Fills a block of numberl bytes with the lower order byte value
number2, at the memory address specified.

INKEY
Returns the input character from the keyboard with no wait
period. It returns a zero, unless you have typed something.
INP(number)
Returns the input value from the port named by the number.

MEM(address)
Returns the byte value at the memory address specified. It can
appear on either side of the assignment sign.

----------1tad1elhaell----------

26

_M_o_d_e_l_I_I_I _________ TRS-BO ® _______ T_i_· n_y_P_a_s_c_a_l_

MEMW(address)
Returns the 16 bit value at the memory address specified. The
low order byte returns to the address, and the high order byte
returns to address+ 1. The value can appear on either side of
the assignment sign.

number! MOD number2
Performs modulo arithmetic of number! on number2. Example:
27 MOD 2 = 2.

MOVE(address2,addressl,number)
Moves a block of the specified number of bytes from memory
address! to memory address2.

OUTP(number l,number2)
Outputs the byte value of number2 to the port named by the
number!.

PLOT(~,y,number)
Plots a graphics block on the screen at horizontal point x and
vertical pointy. x can range from Oto 127, and y can
range from Oto 47. The point is "set" if the number is odd
and "reset" if it is even.

POINT(~,y)
Tests whether the graphics block at the horizontal position x
and the vertical position y is set. If the point is set, the
function returns a one. If you reset the point, the function
returns a zero.

number! SHL number2
Logically shifts number! left number2 bits. Example: 27 SHL
2 = 108.

number! SHR number2
Logically shifts number! right number2 bits. Example: 27
SHR 2 = 6.

SQR(number)
Returns the square of number.

----------1tad1elhaell----------

27

_M_o_d_e_l I_I_r _________ TRS-BO ® _______ T_1_· n_y_P_a_s_c_a_l_

Appendix E/ Error Codes

1 : Error In Simple Type
2: Identifier Expected
3: "Program" Expected
4: ")" Expected
5: ":" Expected
6: Illegal Symbol
7: Error In Parameter List
8: "Of" Expected
9: "(" Expected

10: Error In Type
11: "(" Expected
12: ")" Expected
13: End Expected
14: ";" Expected
15: Integer Expected
16: " = " Expected
17: "Begin" Expected
18: Error In Declaration Part
19: Error In Field-List
20: "," Expected
21 : "*" Expected

50: Error In Constant
51: ": = "Expected
52: 'Then" Expected
53: "Until" Expected
54: "Do" Expected
55: "To"/"Downto" Expected
56: "If" Expected
57: "File" Expected
58: Error In Factor
59: Error In Variable

101: Identifier Declared Twice
102: Low Bound Exceeds High Bound
103: Identifier Is Not Of Appr. Class
104: Identifier Not Declared
105: Sign Not Allowed
106: Number Expected
107: Incompatible Subrange Types
108: File Not Allowed Here
109: Type Must Not Be Real
110: Tagfield Type Must Be Scalar

----------1tad1e/haell----------

28

_M __ o_a_e_1_r_r_r _________ TRS-BO ® _______ T_i_· n..;y~P_a_s_c_a_l_

111: Incompatible With Tagfield Type
112: Index Type Must Not Be Real
113: Index Type Must Be Scalar
114: Base Type Must Not Be Real
115: Base Type Must Be Scalar
116: Error In Type Of Standard Procedure Parameter
117: Unsatisfied Forward Reference
118: Forward Reference Type Identifier In Variable Declaration
119: Forward Declared; Repetition Not Allowed
120: Function Result Type Must Be Scalar
121: File Value Parameter Not Allowed
122: Forward Declared Function, Repetition Not Allowed
123: Missing Result Type In Function Declaration
124: F-Format For Real Only
125: Error In Type Of Standard Function Parameter
126: Number Of Parameters Does Not Agree With Declaration
127: Illegal Parameter Substitution
128: Result Type Of Parameter Function Does Not Agree With Declaration
129: Type Conflict Of Operands
130: Expression Is Not Of Set Type
131: Tests On Equality Allowed Only
132: Strict Inclusion Not Allowed
133: File Comparision Not Allowed
134: Illegal Type Of Operand
135: Type Of Operand Must Be Boolean
136: Set Element Type Must Be Scalar
137: Set Element Types Not Compatible
138: Type Of Variable Is Not Array
139: Index Type Is Not Compatible With Declaration
140: Type Of Variable Is Not Record
141: Type Of Variable Must Be File Or Pointer
142: Illegal Parameter Substitution
143: Illegal Type Of Loop Control Variable
144: Illegal Type Of Expression
145: Type Conflict
146: Assignment Of Files Not Allowed
147: Label Type Incompatible With Selecting Expression
148: Subrange Bounds Must Be Scalar
149: Index Type Must Not Be Integer
150: Assignment To Standard Function Is Not Allowed
151: Assignment To Formal Function Is Not Allowed
152: No Such Field In This Record
153: Type Error In Read
154: Actual Parameter Must Be A Variable
155: Control Variable Must Be Neither Formal Nor Non-Local
156: Multidefined Case Label
157: Too Many Cases In Case Statement
158: Missing Corresponding Variant Declaration

.,

---------- llad1elhaell----------

29

.,:;;;M~o~di.;;e.:;l......:I;,;;;I;,;;;I _________ TRS-BO ® ________ T_i_n_y....;;;P ... a_s..;c.,.a_l_

159: Real Or String Tagfields Not Allowed
160: Previous Declaration Was Not Forward
161: Again Forward Declared
162: Parameter Size Must Be Constant
163: Missing Variant In Declaration
164: Substitution of standard Proc/Func Not Allowed
165: Multidefined Label
166: Multideclared Label
167: Undeclared Label
168: Undefined Label
169: Error In Base Set
170: Value Parameter Expected
171 : Standard File Was Redeclared
172: Undeclared External File
173: (Not Relevant)
174: Pascal Procedure Or Function Expected
175: Missing Input File
176: Missing Output File

201: Error In Real Constant: Digit Expected
202: String Constant Must Not Exceed Source Line
203: Integer Constant Exceeds Range
204: (Not Relevant)

250: Too Many Nested Scopes Of Identifiers
251 : Too Many Nested Procedures And/Or Functions
252: Too Many Forward References Or Procedure Entries
253: Procedure Too Long
254: Too Many Long Constants In This Procedure
255: Too Many Errors In This Source Line
256: Too Many External References
257: Too Many Externals
258: Too Many Local Files
259: Expression Too Complicated

300: Division By Zero
301: No Case Provided For This Value
302: Index Expression Out Of Bounds
303: Value To Be Assigned Is Out Of Bounds
304: Element Expression Out Of Range

398: Implementation Restriction
399: Variable Dimension Arrays Not Implemented

1000: '.' Missing
1001 : Out Of Memory

----------1tad1elhaell----------

30

Model III Tiny Pascal
-----------TRS-BO ® -----------

Appendix F/ How to Play Blockade

The sample program contains BLOCKADE (in procedure PGM 2) and is
loaded with the Tiny Pascal system. The rules are the same as
the amusement hall versions. Each player tries to box in the
other.

The game accepts commands from two players simultaneously. Each
player moves using the keys illustrated below:

Left-Side Player

left--<A>

<W>--up

<D>--right

<X>--down

Right-Side Player

<O>--up

left--<K> <~>--right

<.>--down

The speed is user selected between one and ten, with one being
the fastest and ten the slowest. Three to four is about right
for beginners.

---------1tad1elhaell---------

31

_M_o_d_e_l.....,.I_I_I __________ TRS-BO ® ________ T_i_n_y ___ P_a_s_c_a_l_

Appendix G/ Converting Tiny Pascal to Diskette

If you have a disk drive, you might want to convert your tape
version of Tiny Pascal so that you can load and run it off a
diskette. To convert the program, follow these steps:

1. Insert a system diskette into Drive 0. Insert the Tiny
Pascal cassette into the cassette recorder, and make sure it
is completely rewound and the "Play" key is down. Press the
Reset button on your Model III.

2. After TRSDOS Ready apprears on your screen, type:

TAPE (S=T D=D) <ENTER>

Press <H> in response to the Cass? question. Your Model III
will display:

Device= Tape to Disk
Press ANY key when Cassette ready

3. Press <ENTER>. As the computer transfers the Tiny Pascal
System to the diskette, two asterisks will flash in the
upper right hand corner of the screen. When it is finished,
TRSDOS Ready reappears.

4. Type:

RELO PASCAL/CMD (ADD=6400) <ENTER>

5. After TRSDOS Ready reappears, type:

LOAD PASCAL/CMD <ENTER>

6. When TRSDOS Ready reappears, type:

DEBUG <ENTER>

The screen fills with numbers and letters. This is the
DEBUG program.

----------llad1elllaeli----------

32

_M_o_d_e_l_r_r_r _________ TRS-BO ® ________ T_i_n,;;,y_P_a_s_c_a_l_

7. Press <M>. DEBUG prompts you with M ADDRESS?=. Type 93B0
and then press the spacebar once. Now type in the following
numbers (with no spaces between):

F3 21 00 64 11 00 44 01 BO 2F ED BO C3 00 46

Double check what you have entered, and if it is correct,
press <ENTER>. If it is not correct, you can use the arrow
keys to space over to the incorrect data, type in the
correction, and press <ENTER>.

8. Leave the DEBUG program by pressing <Q> for Quit. When
TRSDOS Ready reappears, type:

DUMP PASCAL (START=6400,END=93BE-,TRA=93B0) <ENTER>

Now to run the Tiny Pascal Program, simply type PASCAL <ENTER>
from TRSDOS Ready.

---------- llad1elhaeli----------

33

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

TANDY CORPORATION
BELGIUM U. K.

280-316 VICTORIA ROAD
RYDALMERE, N.S .W. 2116

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

982 Printed in USA

